

CMB-S4

The Next-Generation CMB Experiment

Julian Borrill, Berkeley Lab & UC Berkeley CMB-S4 Co-Spokesperson & Data Scientist

Origins & Aspirations

CMB-S4 was conceived during the 2013 Snowmass Process as the ultimate ground-based CMB experiment, designed from the outset to

- Cross critical science thresholds across the full range of CMB science.
- Combine the resources and expertise of the entire CMB community.
- Make the full range of CMB science available to the entire CMB community.
- Use existing proven technologies at unprecedented scope and scale.
- Add the unique capacities and capabilities of the DOE laboratories to the long-standing university-based NSF program spanning the Divisions of Physics & Astronomy + Office of Polar Programs.

Science Goals

We have converged on four primary science goals spanning CMB/mm-wave science, knowing that much more will be enabled by meeting these.

- 1. Test models of inflation by measuring (or putting upper limits on) the ratio of tensor to scalar fluctuations.
- 2. Determine the role of light relic particles in fundamental physics, and in the structure and evolution of the Universe.
- 3. Measure the emergence of galaxy clusters as we know them today.
- 4. Explore the mm-wave transient sky.

Primordial Gravitational Waves

Historic opportunity to open up a window to the primordial Universe

All inflation models that naturally explain the observed deviation from scale invariance and that also have a characteristic scale equal to or larger than the gravitational mass scale predict $r > 10^{-3}$.

A well-motivated sub-class within this set of models is detectable by CMB-S4 at 5σ .

CMB-S4 sensitivity to ensures that a non-detection of r would rule out the leading inflationary models, and motivate alternate models for the origin of the universe.

CMB-S4 Science Regt 1.0:

If r > 0.003: measure at 5σ

If r = 0: set $r \le 0.001$ at 2σ

Light Thermal Relics

Additional light particles that appear frequently in extensions to the standard model of particle physics will be constrained by CMB-S4.

CMB-S4 requirement to detect all light relics that decoupled after the start of the QCD transition, providing orders of magnitude improvement on the freeze-out temperature of any thermal relic.

CMB-S4 Science Reqt 2.0:

 \triangle Neff < 0.06 at 2 σ

High Redshift Galaxies and Galaxy Clusters

Legacy Catalog of massive galaxy clusters out **to the highest redshifts at which they exist**

 Including hundreds of clusters at z ≥ 2, at the peak of cosmic star formation, which will not be sampled through other surveys, such as VRO.

Legacy Catalog of high-redshift galaxies out to the highest redshifts at which they exist.

Including protoclusters at z > 4

CMB-S4 Science Reqt 3.0:

Detect at 5σ all galaxy clusters at z > 1.5 with integrated Compton $Y_{SZ,500}$

- above 10⁻¹² over 50% of the sky
- above 10⁻¹³ over 3% of the sky

Millimeter-Wave Transients

At the sensitivity and resolution required by its other science goals, CMB-S4 is also a unique mm-wave observatory.

By incorporating high-cadence observations over a common field we can detect mm-wave transients and add extend the spectrum of Multi-Messenger Astronomy into the microwave.

CMB-S4 Science Regt 4.0:

Detect gamma-ray burst afterglows brighter than 30 mJy at 95 and 150 GHz

Measurement Requirements

SCIENCE		FREQUENCY COVERAGE	ANGULAR RESOLUTION	MAP DEPTH	SKY AREA	CADENCE	
r	Primordial BB Lensing BB	Wide	Low Moderate	Ultra-Deep Ultra-Deep	Small	-	
N _{eff}		Moderate	High	Deep	Large	-	
Clusters		Wide	High	Deep Ultra-Deep	Large Small	-	
GRBs		Narrow	High	Deep	Large	Daily	

Full science suite requires 3 surveys:

- 1. Ultra-deep, small area, low resolution (r primordial)
- 2. Ultra-deep, small area, high resolution (r lensing, clusters)
- 3. Deep, wide area, high resolution (N_{eff}, clusters, GRBs)

Detailed Measurement Requirements

We have derived detailed measurement specifications for each of our three surveys that collectively meet the full set of our design-driving requirements:

Ultra-Deep	Frequency	GHz		30	40	85	95	145	155	220	270
Low Resolution	QU noise	uK-arcmin		3.50	4.50	0.88	0.78	1.20	1.30	3.50	6.00
Survey:	Angular resolution	arcmin		72.80	72.80	25.50	22.70	25.50	22.70	13.00	13.00
3% Sky	Ell-knee	≤		60	60	60	60	65	65	65	65
Ultra-Deep	Frequency	GHz	20	27	39		93	145		225	278
High Resolution "Delensing"	QU noise	uK-arcmin	15.00	21.00	4.60		0.71	0.65		2.10	4.90
Survey:	Angular resolution	arcmin	13.40	8.60	5.90		2.60	1.60		1.20	1.00
3% Sky	Ell-knee	≤	"Level seen by SPT-3G"								
Deep-Wide	Frequency	GHz		27	39		93	145		225	278
High Resolution	I noise	uK-arcmin		22.28	12.18		1.97	2.18		7.20	17.62
"Legacy" Survey:	QU noise	uK-arcmin		31.51	17.23		2.79	3.09		10.18	24.92
66% Sky	Angular resolution	arcmin		7.40	5.10		2.20	1.40		1.00	0.90
Daily Cadence	Ell-knee	≤	"Level seen by AdvACT"								

Experiment Design

The experiment design spans the instruments and their observations

Together they must meet the measurement requirements

Instrument design

- Resolution (telescope apertures & quality of mirrors)
- Frequency coverage (detector bandpasses)
- Depth (numbers of detectors)

Observation design

- Depth (duration of observation)
- Sky area (survey strategy)
- Cadence (survey strategy)

Telescopes

Deep-Wide Survey:

 LAT: 2 x 6m Cross-Dragone telescopes with 18-tube/1-wafer cryostats and no ground shield [cf. CCAT-prime, SO]

Ultra-Deep Surveys:

- SAT: 18 x 0.55m telescopes with 3-shooter cryostats & ground shields [cf. BICEP Array, SO]
- LAT: 1 x 5m Three-Mirror Anastigmat telescope with an 18-tube/1-wafer cryostat and no ground shield.

Detectors, Readout, Modules

Detectors:

 550,824 transition-edge sensors on 503 wafers of horn-coupled dichroic pixels over 9 frequency bands [cf. SPT-3G, SO]

Readout:

 8493 modules of 64-way time-domain multiplexed readout [cf. AdvACT]

Module Assembly & Testing:

 503 modules including 100mK cryoelectronics

Data Acquisition & Management

Data Acquisition

- Handle 6 Gbit/s of data coming off the telescopes for 7 years.
- Manage the coordinated operation of 21 telescopes.

Data Management

- Reduce 60PB of data to maps 10x the volume of all previous CMB experiments combined - using an integrated Superfacility of DOE HPC & NSF HTC computing resources.
- Simulate and reduce the full data volume 1000s of times.

Survey Sites

- Ground-based CMB observations are limited by the atmosphere: we need high, dry, sites.
- The South Pole and Chilean Atacama are the highest, driest sites.
- The US CMB community has a long history of working at both, and significant infrastructure is already in place for CMB-S4 precursors (South Pole Observatory; Simons Observatory & CCAT-prime)

Mean precipitable water vapor across the globe. Candidate sites (dark blue) are the South Pole, Chilean and Argentinian Atacama Desert, Tibetan Plateau & Greenland.

Survey Design

- CMB-S4 is unique in having two exceptional observing sites available.
- The biggest difference between the sites is in the types of sky surveys their latitudes can support.
 - Wide-area surveys can only be performed from Chile; only fraction of the survey area can be observed with a daily cadence.
 - Compact ultra-deep surveys can only be performed from the South Pole; the full survey area can be observed with a daily cadence.
- Our survey requirements can best be met by using both sites.

Chile wide survey hitmap

Chile deep survey hitmap

South Pole ultra-deep survey hitmap

Timeline & Status

- 2013 Conceived in Snowmass Process
- 2014 Recommended by the Particle Physics Project Prioritization Panel under all budget scenarios [DOE, NSF Physics]
- 2015 Identified by the National Academy of Sciences/National Research Council as one of three strategic priorities for Antarctic science [NSF OPP]
- 2017 Concept Definition Taskforce report unanimously approved by Astronomy & Astrophysics Advisory Committee
- 2019 DOE takes Critical Decision 0, identifying mission need
- 2020 Astro2020 performs full Technical Risk And Cost Evaluation
- 2021 Astro2020 report pending ... [NSF Astronomy]

Future Plans & Summary

Assuming recommendation by Astro2020:

- DOE + NSF joint construction project
- Phased commissioning starting in the late 2020s
- 7 years of operations through the mid 2030s

With 21 telescopes at the South Pole and in the Chilean Atacama desert surveying the sky with 550,000 cryogenically-cooled superconducting detectors for 7 years, CMB-S4 will deliver transformative discoveries in fundamental physics, cosmology, astrophysics, and astronomy.